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Calculation of densities of states and spectral functions by Chebyshev recursion
and maximum entropy

R. N. Silver and H. Ro¨der
MS B262 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 26 March 1997!

We present an efficient algorithm for calculating spectral properties of large sparse Hamiltonian matrices
such as densities of states and spectral functions. The combination of Chebyshev recursion and maximum
entropy achieves high-energy resolution without significant roundoff error, machine precision, or numerical
instability limitations. If controlled statistical or systematic errors are acceptable, CPU and memory require-
ments scale linearly in the number of states. The inference of spectral properties from moments is much better
conditioned for Chebyshev moments than for power moments. We adapt concepts from the kernel polynomial
method, a linear Chebyshev approximation with optimized Gibbs damping, to control the accuracy of Fourier
integrals of positive nonanalytic functions. We compare the performance of kernel polynomial and maximum
entropy algorithms for an electronic structure example.@S1063-651X~97!10309-9#

PACS number~s!: 02.70.2c, 71.15.2m, 71.20.2b
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I. INTRODUCTION

Many computational physics problems involve very lar
sparse Hamiltonian matrices. IfN is the number of states
finding all eigenvectors and eigenvalues requires CPU t
scaling asN3 and memory scaling asN2. For individual
eigenstates the preferred method is Lanczos diagonaliza
which uses only matrix-vector-multiply operations and
quires CPU and memory scaling asN. Densities of states
and spectral functions for finite-dimensional Hamiltonia
are sums ofd functions with positive amplitudes. In the the
modynamic limit of relevance to condensed-matter phys
these can extrapolate to singular structures such as iso
states, band edges, and Van Hove singularities. New lin
scaling methods are needed for calculating such spe
properties which involve many eigenstates, and for quanti
derived from them including thermodynamics, total energ
for electronic structure and forces for molecular dynami
Limited energy resolution and statistical accuracy are of
acceptable provided uncertainties can be quantified.

The maximum entropy method@1–3# is a popular ap-
proach: maximize the information theoretic relative entro
of the spectrum subject to data constraints. The input data
usually power moments. Maximum entropy spectra
strictly positive. Maximum entropy spectra are the soluti
of a convex nonlinear optimization problem. Maximum e
tropy always yields broadened representations of the
spectra. The resolution function is nonuniform and unknow
with some parts of a spectrum converging more rapidly th
others as the number of moments increases. Occasion
maximum entropy yields a spurious structure; for example
can ‘‘ring’’ in smooth regions of a spectrum near to a V
Hove singularity. Nonanalytic features are better appro
mated at higher-energy resolution, which is achieved
maximum entropy by fitting more moments. However,
moment order increases, the calculation of power momen
more sensitive to machine precision limits, and the optim
zation problem is more ill conditioned. Maximum entropy
difficult to implement for more than about 50 power m
ments.
561063-651X/97/56~4!/4822~8!/$10.00
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The kernel polynomial method@4–6# is much easier to
implement for high-energy resolution applications. It is a li
ear Chebyshev approximation to spectra using Chebys
moment data. Abrupt truncation of Chebyshev series res
in the Gibbs phenomenon: a lack of uniform convergence
nonanalytic~or singular! features in spectra. Instead, the m
ments of the kernel polynomial approximation are the d
multiplied by Gibbs damping factors, which are chosen
ensure positive spectra with the highest-energy resolution
kernel polynomial approximation is a convolution of the tr
spectrum with a known positive kernel polynomial functio
It can be rapidly evaluated by fast Fourier transform witho
nonlinear optimization. In contrast to Lanczos metho
Chebyshev recursion is numerically stable without accum
lation of roundoff error; thus there is no need for compu
tionally expensive reorthogonalization@7#. For sparse Hamil-
tonians, the computational cost for generating Chebys
moment data is linear scaling if controlled systematic or s
tistical errors are acceptable@4,8#. Chebyshev approxima
tions have been applied recently to densities of states
spectral functions in diverse areas of condensed matter p
ics including the Heisenberg antiferromagnet@4#, the Hol-
stein t-J model@9#, the dielectric constants of quantum do
@10#, linear scaling algorithms for tight-binding molecula
dynamics @11,8#, nonorthogonal electronic structure@12#,
and so on. Chebyshev approximations have also been de
oped independently for scattering problems in quant
chemistry@13–18#.

A comparison of the maximum entropy and kernel po
nomial methods reveals advantages for each.~A comparison
of Lanczos methods with kernel polynomial methods may
found in Ref.@5#.! The maximum entropy method achieve
significantly higher-energy resolution, requiring calculati
of 4–10 times fewer moments for typical applications. Ho
ever, the nonlinear optimization problem can be difficult
solve, the resolution is nonuniform and unknown, and th
is a risk of artifacts. The kernel polynomial method has s
nificantly poorer energy resolution. However, nonlinear o
timization is not needed, the resolution function is unifor
and known, and there is no risk of artifacts.
4822 © 1997 The American Physical Society
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56 4823CALCULATION OF DENSITIES OF STATES AND . . .
Our experience is that, in most cases, the computatio
cost of generating moment data limits the ability to do c
culations. The practical necessity to use computational
sources in the most efficient way motivates our developm
of a new maximum entropy algorithm based on Chebys
moment data. Chebyshev moments have several advan
over power moments for a maximum entropy algorithm:

~i! Machine precision limitations.In a power moment in-
formation in low digits past the decimal point is redunda
with information in low-order moments. New information
contained in higher digits whose cardinality increases w
the order of the moment. Thus machine precision puts a l
on how many power moments are useful to calculate.
contrast, there is no redundancy in moments constru
from orthogonal polynomials@19#, and machine precision i
not limiting.

~ii ! Conditioning.The ill-posed inverse problem of infer
ring a spectrum from a limited number of Chebyshev m
ments is much better conditioned than from the same num
of power moments. In particular, the Hessian for maxim
entropy optimization has a much flatter eigenvalue spect
for Chebyshev moments than for power moments.

~iii ! Computational efficiency and accuracy.A simple co-
ordinate transformation converts a Chebyshev series
Fourier series, which enables use of fast Fourier transf
methods.

In summary, the combination of Chebyshev recursion a
maximum entropy should provide an efficient stable alg
rithm capable of reaching arbitrarily high-energy resolutio

There is an extensive literature@20–22# on convex non-
linear optimization applied to maximum entropy. For o
applications, we find the principal new algorithmic difficul
to be control of the numerical accuracy of Fourier integr
when the true spectra have singular~or nonanalytic! features
such asd functions. We adapt concepts from the kernel po
nomial method and the Shannon sampling theorem to s
this numerical accuracy problem. The resulting algorith
has no difficulty handling thousands of Chebyshev mome
if necessary.

In Sec. II we briefly review methods for generatin
Chebyshev moment data. In Sec. III we describe the ke
polynomial method. In Sec. IV we present our maximu
entropy algorithm. In Sec. V we illustrate the method us
an electronic structure example, comparing the performa
of the maximum entropy and kernel polynomial methods.
Sec. VI we conclude.

II. GENERATION OF CHEBYSHEV MOMENT DATA

Consider a density of states as representative of the s
tral properties of interest. The first step is to scale the Ham
tonian,H5aX1b such that all eigenvaluesxn of X satisfy
21<xn<11. These end points are rapidly computed,
example, by Lanczos methods using the same matrix-vec
multiply operations required for generating Chebyshev m
ments. The only difference between the kernel polynom
method and the maximum entropy method is, in order
minimize endpoint corrections in fast Fourier transfo
evaluation of Fourier integrals, we recommend placing allxn
well inside 21 and11, for example,20.99<xn<10.99.
This point will be discussed further in Sec. IV.
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The density of states is then

D~x!5
1

N (
n51

N

d~x2xn!. ~1!

Data aboutD(x) consist of Chebyshev moments

m̂m5Tr$Tm~X!%5E
21

1

Tm~x!D~x!dx. ~2!

We use the notationm̂m for a datum on a moment, even
this estimate is approximate. We calculate moments us
the Chebyshev recursion relation

Tm11~X!52XTm~X!2Tm21~X!, ~3!

which requires the same optimized matrix-vector-multip
algorithm used in Lanczos methods. Unlike Lanczos rec
sion, Chebyshev recursions are numerically stable to a
trarily large numbers of recursions. We use rules for mu
plying Chebyshev polynomials, e.g.,T2m52TmTm21, so
that onlyM /2 matrix-vector multiplies are needed to gene
ateM moments.

Exact evaluation ofM moments requires CPU time pro
portional to O(N2M /2) for sparse matrices. Genera
Tm(X)u i & for each basis stateu i &. The estimator for Cheby-
shev moments is then

m̂2m5
2

N (
i 51

N

^ i uTm~X!Tm~X!u i &21. ~4!

There is a similar expression form odd.
Stochastic evaluation@4# requires CPU time scaling a

O(NMNr). The estimator for Chebyshev moments is

m̂m'
1

Nr
(

r
^r uTm~X!ur &, ~5!

where theur & are Nr Gaussian random vectors. Such da
have a statistical variance proportional to (NNr)

21, which
may be expressed directly in terms of the density of sta
An estimation of statistical errors was described by Silv
and Roder@4#. More sophisticated choices of random vect
appear to reduce statistical variance@3#, but they introduce
unwanted statistical bias and make error estimation diffic

Local truncation evaluation of moments requires CP
time scaling asO(NMJ). Here, moments are calculated wi
a locally truncated HamiltonianH i , whereJ is the number
of states included in the truncation range. The estimator
Chebyshev moments is

m̂m'(
i

^ i uTm~X i !u i &. ~6!

This generates data with a systematic error determined by
truncation range. ‘‘Logical’’ truncation@8# appears to con-
verge more rapidly and smoothly than ‘‘physical’’ truncatio
schemes@11,23#. Local truncation may be applicable if th
density matrix has only local off-diagonal elements, as
tight-binding Hamiltonians for insulators. Exact moment d
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4824 56R. N. SILVER AND H. RÖDER
rivatives needed to estimate forces for molecular dynam
can be calculated from a Chebyshev derivative formula.

CPU time and memory limit the number of momentsM
and their statistical and systematic errors. Fortunately, b
stochastic and local truncation methods provide mean
estimate and control errors.

III. KERNEL POLYNOMIAL APPROXIMATION

The kernel polynomial method has two roles in this pap
First, it is a method to estimate spectra from Chebyshev
ment data. Second, it provides our approach to control
merical accuracy in the evaluation of Fourier integrals
nonanalytic spectra in our maximum entropy algorithm.

An exact Chebyshev moment expansion of the density
states is

D~x!5
1

pA12x2 Fm012 (
m51

`

mmTm~x!G . ~7!

The kernel polynomial method truncates Eq.~7! at M mo-
ments, introduces a factorgm

M to damp Gibbs phenomenon
and substitutes~possibly inaccurate! data m̂m for the mo-
ments. The kernel polynomial approximation to a density
states is then

DK~x!5
1

pA12x2 F112 (
m51

M

m̂mgm
MTm~x!G . ~8!

Let f[cos21(x). Then Tm(x)5cos(mf). Define
D(f)[sin(f)D(X). The Chebyshev moments are then Fo
rier integrals

mm5E
21

1

Tm~x!D~x!dx5E
0

p

cos~mf!D~f!df. ~9!

If the data are exact,DK(f) can be represented as both
simple convolution and a truncated Fourier series,

DK~f!5E
0

2p

dK~f2fo!D~fo!dfo ,

dK~f!5
1

2p Fg012 (
m51

M

gm
Mcos~mf!G . ~10!

For later purposes, we emphasize that the Fourier integra
DK(f) are mm5m̂mgm

M . Thus DK(f) does not fit the mo-
ment data. If the data are inexact, corresponding rand
variables should be added to Eq.~10!.

The kernel dK(f) is a 2p-periodic polynomial approxi-
mation to a Dirac delta function, analogous to the resolut
function of a spectrometer. Resolution is uniform inf with
width Df}M 21. If gm

M51, at largeufu the kernel is oscilla-
tory with periodDf5p/M within an envelope function de
creasing slowly as 1/f2. The result is the Gibbs phenom
enon: a lack of uniform pointwise convergence of the cos
series at singular~or nonanalytic! structures in the density o
states. An optimalgm

M that minimizes the Gibbs phenomeno
s
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may be derived@5# by requiring the kernel to be a strictl
positive normalized polynomial of degreeM with minimal
variance inf. The result is

gm
M5 (

n50

M2m

anan1m , ~11!

where

an5
Un~l!

A(n50
M Un

2~l!
. ~12!

and

Un~l!5
sin@~n11!fl#

sin~fl!
, cos~fl!5l. ~13!

HereUn are Chebyshev polynomials of the second kind, a
fl[p/(M12). gm

M decrease smoothly and monotonica
from 1 to 0 asm increases from 0 toM . This kernel was
originally derived by minimizing the uniform norm@24#. Its
envelope function decreases exponentially at largeufu.

The kernel polynomial method is also applicable to sp
tral functions@5#,

A~v!5 lim
h→01

1

p
ImH K C0UO†

1

v2H2 ih
OUC0L J ,

~14!

where O is the appropriate Hermitian operator. The corr
sponding Chebyshev moments have the formm̂m

O

5^C0uO†Tm(X)OuC0&. Silver et al. @5# compared the per-
formance of the kernel polynomial method to Lanczos me
ods for spectral functions.

Applications of kernel polynomial approximations to the
modynamics use a rapidly converging Fourier-Bessel exp
sion of the partition function@4#,

Z5e2bbF I 0~ba!12 (
m51

`

I m~ba!m̂mG . ~15!

I m(ba) are modified Bessel functions. The partition functio
involves integral rather than pointwise convergence, so
optimal choice is no Gibbs damping,gm

M51.
Our maximum entropy algorithm uses the kernel polyn

mial approximation in an interesting way. We employ fa
Fourier transforms to evaluate Fourier integrals ofD(f) by
summing overL11 pixels equally spaced inf, correspond-
ing to samplingD(f) at the L11 zeros of cos@(L11)f#.
The Shannon sampling theorem says that the only func
which can be exactly evaluated by this procedure is a b
limited function, a finiteLth-order cosine series. So, in fac
our algorithm exactly evaluates Fourier integrals of a Che
shev approximation. The procedures in Sec. II generate
ments of a function consisting of a sum ofN d functions with
positive amplitudes, equivalent to an infinite-order Cheb
shev series. Inasmuch as, typically,N@L, we should not
expect to resolve all states. Our maximum entropy algorit
requires moments of anLth-order positive Chebyshev ap
proximation. The only Chebyshev approximation that c
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56 4825CALCULATION OF DENSITIES OF STATES AND . . .
satisfy the positivity constraint required by maximum e
tropy is a kernel polynomial approximation. Moments of t
kernel polynomial approximation are related to moments
the true function by Gibbs damping factors. This subtle d
ference becomes important because we demand high num
cal accuracy. We elaborate on these points in Sec. IV.

IV. MAXIMUM ENTROPY ALGORITHM

This section presents our maximum entropy algorith
Although it may be regarded as an adaptation of previ
maximum entropy algorithms@20–22#, our problem has is-
sues of numerical accuracy forD(x) that contain singular
~nonanalytic! structures such asd functions.

Consider the case where the data are subject to Gau
uncertainties,

m̂m5mm1hm , Ehm50, Ehmhm85sm
2 dmm8 . ~16!

Here h is a random variable, andE denotes the statistica
expectation value of the random variable following it. T
x2 statistic for measuring quality of fit is then

x25 (
m50

M S m̂m2mm

sm
D 2

. ~17!

In the case of exact moment data, setsm to the numerical
precision required, which can be very small. Them50 term
is included to constrain normalization,m̂051. Taking the
limit s0→0 strictly enforces normalization. In our applica
tions using 32-bit computers, sixth or seventh digits past
decimal point of moments often contain important inform
tion. We typically dropx2 by 12–14 orders of magnitud
below its starting values during the course of converging t
maximum entropy solution. Such high numerical accura
can be critical to avoid spurious artifacts, and to yield t
correct physics.

Therefore, very careful attention to numerical accuracy
required in evaluating Fourier integrals, Eq.~9!. To have an
efficient maximum entropy algorithm, we evaluate Four
integrals by fast Fourier transform. This equals a sum o
equally spaced points inf,

mm'(
l 50

L

cos~mf l !D~f l !Df. ~18!

The L11 f l satisfy cos@(L11)fl#50, where 0< l<L. The
Shannon sampling theorem says this approximation beco
exact only if D(f) is a band limited function of degreeL.
But the exactD(f) in our applications are sums ofd func-
tions with positive amplitudes, so evaluation of Fourier in
grals by fast Fourier transform with a finite number of pixe
L is not exact. The maximum entropyD(f) also correspond
to infinite-order Fourier series, so evaluation of their Four
integrals by this procedure is not exact either.

Our strategy to minimize numerical errors is to minimi
high-frequency components of the maximum entropy so
tion. The goal of our algorithm is to find a kernel polynomi
approximation forM3K moments instead ofM moments,
where K is some integer. Maximum entropy provides t
criterion for extrapolating the moment series. But the m
-

f
-
ri-

.
s

ian

e
-

a
y
e

s

r
r

es

-

r

-

-

ments of the kernel polynomial approximation of degr
M3K arem̂mgm

M3K , so these are what we should use as d
in our x2 criterion. Modifying the data in this way ensure
that our target spectrum is positive and satisfies the Ha
dorff conditions for the existence of a maximum entro
solution. ChoosingK in our algorithm is equivalent to choos
ing the desired energy resolution. If our maximum entro
solution was in fact equivalent to a higher-resolution ker
polynomial approximation, choosing the number of pixe
L5M3K would yield exact Fourier integrals. But inasmuc
as our maximum entropy solution is not exactly band li
ited, we choose the number of pixels some integer factoI
larger thanM3K, i.e., L5M3K3I . The extra factorI
further reduces numerical errors.

IncreasingL to improve numerical accuracy must be ba
anced against increased computational resources require
the fast Fourier transform. CPU time scales asO(L ln L) and
memory scales asO(L). Typically, we find maximum en-
tropy improves resolution by factors of 4–10 over the ker
polynomial method, so most of the gain is obtained
choosing 4<K<10. The correspondinggm

M3K’s for
0<m<M are only slightly smaller than 1, but this differ
ence is enough to determine whether our algorithm c
verges to the stopping criterion or stalls at highx2. Without
the Gibbs damping correction, convergence may be v
nonuniform, and in some regions approach an energy re
lution that cannot be described with the number of pix
chosen. With the Gibbs damping correction, the dynam
range of the resolution improvement is limited, and can
handled with the number of pixels chosen. We also typica
find the choiceI>4 to be sufficient to fit Chebyshev mo
ments to seven-digit accuracy.

End-point corrections are another concern in evaluat
Fourier integrals. They are often essential to obtain reas
able convergence for high-order moments. Sophisticated
proaches to this problem have been developed based o
terpolation schemes@25#. However, within our algorithm we
have the option of minimizing end-point corrections at t
outset, by forcing the spectrum to be close to zero near e
pointsf50 andf5p. The easy way to forceD(f) toward
zero at end points is to scale the HamiltonianH5aX1b
such that all eigenvaluesxn of X lie between, say,20.99 and
10.99, rather than21 and11. This change has only a 1%
impact onf resolution, but it avoids the end-point corre
tions and the bias of interpolation schemes. This justifies
recommendations made in Sec. II for scaling the Ham
tonian. We often find this superficially small correction to
critical to achieving high accuracy fits without stalling.

Our optimization problem is to maximize the relative e
tropy

S[E
0

pFD~f!2Do~f!2D~f!lnS D~f!

Do~f! D Gdf ~19!

subject to data constraints.S is strictly negative and equal
zero only whenD5Do . HereDo(f) is a default model for
the density of states in the absence of data. We obtain fa
convergence with less risk of spurious artifacts by us
prior knowledge to choose a default model closer to the fi
answer. In the absence of prior knowledge, we usually
the kernel polynomial approximation as the default mod
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4826 56R. N. SILVER AND H. RÖDER
inasmuch as the motivation for maximum entropy is to i
prove energy resolution beyond the kernel polynom
method.

More specifically, theprimal optimization problemis to
maximize

Qp[S2
x2

2a
~20!

as a function of a continuous variableD(f). The statistical
regularization parametera sets a balance between the fi
measured byx2, and an information measure2S of distance
between the inferredD(f) and the default modelDo(f).
Alternatively, we regard 1/a as a Lagrange multiplier enforc
ing a constraint onx2.

Our algorithm consists of three nested loops: the ou
loop iteratively decreasesa starting from a high value, unti
a stopping criterion is reached; the middle loop for eacha
iteratively solves for theD(f) that maximizesQp ; the inner
loop at eacha andD(f) solves for the next update ofD(f)
using linear equation solvers such as conjugate gradients
discuss each of these loops in turn.

The outer loop typically starts at largea1'xo
2 , thex2 of

the default modelDo , then progress geometrically down
a, e.g.ak115ak/2. The correspondingx2 decreases and th
information2S increases. If the middle loop is unstable,
measured by a significant increase inx2, go back to condi-
tions at the start of this loop, halve the step down ina, and
iterate until stability is reached. Popular stopping criteria
a arex25M andx222aS5M , although many other crite
ria are discussed in the literature. Once the stopping crite
is passed, perform a golden search for the optimala. We
often find that the information2S saturates at an
a-independent value asa decreases, so that the outer lo
may be stopped earlier.

In principal, the middle loop solves the primal optimiz
tion problem

FIG. 1. Density of states of an orthogonal tight-binding mod
for amorphous diamond calculated with the maximum entro
method using 1024 exact Chebyshev moments.
-
l

r

e

r

n

dQp

dD~f!
52 lnS D~f!

Do~f! D1 (
m50

M
m̂m2mm

asm
2 cos~mf!50.

~21!

This is a convex optimization problem having a unique a
swer. Unfortunately, this approach is difficult because t
problem statement is written in terms of a continuous po
tive variableD(f) which varies typically by many orders o
magnitude. In practice, the number of variables to optim
would be the number of pixelsL chosen, which for reason
of numerical accuracy we discussed earlier is usually a q
large number. However, adual optimization problem@20#
solves the same problem, is more stable numerically, an
easier to implement than the primal problem. It requires o
M!L parameterslW defined by

lm[
mm2m̂m

asm
2 . ~22!

Then the maximum entropyD(f) satisfying Eq.~21! is

D~f!5Do~f!expS 2 (
m50

M

lmcos~mf!D . ~23!

This form is also obtained by maximizing entropy subject
Lagrange contraints on moments with Lagrange multipli
lW . The dual optimization problem is to maximize

Qd[ lnS E
0

p

D~f!df D 1 (
m50

M F m̂mlm1
asm

2 lm
2

2 G ~24!

as a function of the set oflm . Mapping onto the dual spac
of Lagrange multipliers reduces an infinite-dimensional o
timization problem to a feasible finite-dimensional proble
Away from the maximum, define

jm[
]Qd

]lm
5m̂m2mm1asm

2 lm . ~25!

Equation~22! is satisfied whenjm50.
The middle loop of our algorithm solves Eq.~22! by

Newton-Raphson iteration. Beginning with some startinglW 0,
the ~n11st step is

Hn~lW n112lW n!5jWn. ~26!

HereH is the Hessian of the dual problem, which is a po
tive definiteM3M matrix and a simple function of the mo
ments,

Hmm8[
]2Qd

]lm]lm8
5

mm1m81m um2m8u

2
1asm

2 dmm8 .

~27!

Then

Qd5Qp1 (
m50

M jm
2

2asm
2 . ~28!

We haveQd.Qp in Eq. ~28!, and as the iteration proceed
Qd (Qp) approachesQ` from above~below!. Hence con-

l
y
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FIG. 2. Comparison of portions of the densi
of states in Fig. 1 calculated by maximum e
tropy for 128 and 1024 moments.
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verging bounds at thenth iteration areQd
n>Q`>Qp

n , where
Q`[ limn→`$Qd

n ,Qp
n%. These bounds provide stopping crit

ria for the middle loop. We typically stop atQd51.02Qp .
The inner loop is the solution of Eq.~26! by linear equa-

tion solvers such as conjugate gradients. This task can
handled by standard packages such asEISPACK. An advan-
tage of Chebyshev moments is that the spectrum of eig
values of the Hessian in Eq.~27! is almost flat, whereas th
eigenvalue spectrum for power moments is steeply decr
ing. Thus this problem is well conditioned for Chebysh
moments, but can easily become ill conditioned for pow
moments asM increases.

We find the CPU time required by our algorithm scales
O„ML ln(L)…. But it remains negligible compared to th
CPU time required to generate moment data for most pr
lems. As we stated before, use of the maximum entr
method usually cuts overall CPU requirements by at lea
factor of 4 over the kernel polynomial method. Isolated fe
tures in spectra, such as individual states and band ed
usually converge much faster, up to a factor of 10 or mo

A few words should be said about data generated by
chastic methods in Eq.~5!. Calculation of the covariance
matrix C for such data is described in an earlier paper@4#. Its
structure is the same as the Hessian in Eq.~27!. The appro-
priate generalizedx2 statistic is

x25~m̂2m!†C21~m̂2m!. ~29!

There is a cancellation, leading to an effective Hessian
sentially proportional to a unit matrix and independent ofD.
This property further facilitates finding maximum entrop
solutions for data generated by the stochastic method.

Energy derivatives needed for molecular dynamics can
derived for maximum entropy using the same expressions
exact derivatives of moments. The statistical error for s
chastic methods using Gaussian random vectors can e
be
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be accommodated, because the covariance of momen
proportional to the Hessian. Details of these extensions
be presented elsewhere.

V. AN EXAMPLE

We illustrate the performance of our maximum entro
method~MEM! algorithm with the example of an orthogon
tight-binding calculation of the density of states of amo
phous diamond by Dong and Drabold@26#. The purpose of
their study was to examine the localized to extended tra
tion in band-tail states in an amorphous semiconductor.
refer readers to their paper for a discussion of the phys
Here we are only interested in a comparison of methods
estimating densities of states. We note that their maxim
entropy calculations used Chebyshev moments, but w
limited to about 90 moments because of the difficulties
implementing a maximum entropy algorithm. With the alg
rithmic improvements presented in this paper, we dem
strate that maximum entropy calculations with thousands
moments are now feasible.

The Hamiltonian considered has 16 384 states. We sh
maximum entropy results for the goal of improving reso
tion by a factor of 8 over the kernel polynomial metho
Hence we chooseK58. We setI 54 to minimize numerical
errors in the evaluation of Fourier integrals. We use up
M51024 exact Chebyshev moments. Hence the numbe
pixels L5M3K3I<32 768.

Figure 1 shows the full density of states obtained us
maximum entropy forM51024. Note the optical gap in th
density of states. Figure 2 shows a comparison of maxim
entropy results forM5128 and 1024 for two portions of thi
spectrum. On the left is a region where the states are de
and on the right is a region inside the gap where the st
are sparse.M5128 is a factor of 2 or 3 larger than th
maximum number of moments that can be handled by m
mum entropy algorithms using power moments. Our alg
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FIG. 3. Comparisons of portions of the den
sity of states in Fig. 1 calculated by the kern
polynomial method~KPM! for 1024 moments
and by the maximum entropy method~MEM! for
1024 moments.
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nu-
rithm clearly is able to handle many more moments and
achieve much higher-energy resolution. Figure 3 shows
same comparison between kernel polynomial method
maximum entropy withM51024 moments. Again maxi
mum entropy provides a dramatic improvement in ene
resolution over the kernel polynomial method.

VI. CONCLUSION

We have described an efficient algorithm to calculate d
sities of states and spectral functions of large sparse Ha
tonians using Chebyshev recursion and maximum entrop
is a nonlinear extension of the kernel polynomial method
is capable of handling large numbers of moments a
nonanalytic~singular! structures in densities of states a
spectral functions to achieve high-energy resolution. T
choice of Chebyshev recursion overcomes problems of
chine precision and ill-conditioning found in maximum e
tropy algorithms for power moments. It also circumvents
accumulation of numerical roundoff errors in Lanczos rec
sion. It controls the numerical accuracy of Fourier integr
by multiplying the moment data by Gibbs damping facto
appropriate to the number of pixels chosen. It avoids e
point corrections to the fast Fourier transforms by appro
ate scaling of the Hamiltonian. Our algorithm achieves s
o
e
d

y

-
il-
It

It
d

e
a-

e
-
s

-
i-
-

nificant resolution gains over the kernel polynomial meth
for practical physics examples. The CPU time we need
find the maximum entropy solution scales approximately
the number of pixels times the number of moments. For m
applications, this time is small compared to the CPU time
need to generate the Chebyshev moment data. Overall C
time can scale linearly in the number of states if control
statistical or systematic errors are acceptable.

The resulting maximum entropy algorithm has some tu
ing parameters to control the balance between numerica
curacy, convergence, energy resolution, and computatio
resources. AFORTRAN 77 program implementing our algo
rithms for the Kernel polynomial method and MEM is ava
able from the authors by sending e-mail
rns@loke.lanl.gov. It uses publically available libraries i
cluding DFFTPACK for fast Fourier transforms andEISPACK

for solving systems of linear equations.
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