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Calculation of densities of states and spectral functions by Chebyshev recursion
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We present an efficient algorithm for calculating spectral properties of large sparse Hamiltonian matrices
such as densities of states and spectral functions. The combination of Chebyshev recursion and maximum
entropy achieves high-energy resolution without significant roundoff error, machine precision, or numerical
instability limitations. If controlled statistical or systematic errors are acceptable, CPU and memory require-
ments scale linearly in the number of states. The inference of spectral properties from moments is much better
conditioned for Chebyshev moments than for power moments. We adapt concepts from the kernel polynomial
method, a linear Chebyshev approximation with optimized Gibbs damping, to control the accuracy of Fourier
integrals of positive nonanalytic functions. We compare the performance of kernel polynomial and maximum
entropy algorithms for an electronic structure exampB1063-651X97)10309-9

PACS numbdps): 02.70—c, 71.15-m, 71.20-b

[. INTRODUCTION The kernel polynomial methof4—6] is much easier to
implement for high-energy resolution applications. It is a lin-
Many computational physics problems involve very largeear Chebyshev approximation to spectra using Chebyshev
sparse Hamiltonian matrices. N is the number of states, moment data. Abrupt truncation of Chebyshev series results
finding all eigenvectors and eigenvalues requires CPU timén the Gibbs phenomenon: a lack of uniform convergence at
scaling asN® and memory scaling adl?. For individual  nonanalytic(or singulaj features in spectra. Instead, the mo-
eigenstates the preferred method is Lanczos diagonalizatioments of the kernel polynomial approximation are the data
which uses only matrix-vector-multiply operations and re-multiplied by Gibbs damping factors, which are chosen to
guires CPU and memory scaling & Densities of states ensure positive spectra with the highest-energy resolution. A
and spectral functions for finite-dimensional Hamiltonianskernel polynomial approximation is a convolution of the true
are sums ofs functions with positive amplitudes. In the ther- spectrum with a known positive kernel polynomial function.
modynamic limit of relevance to condensed-matter physicslt can be rapidly evaluated by fast Fourier transform without
these can extrapolate to singular structures such as isolat@dnlinear optimization. In contrast to Lanczos methods,
states, band edges, and Van Hove singularities. New linedthebyshev recursion is numerically stable without accumu-
scaling methods are needed for calculating such spectrdation of roundoff error; thus there is no need for computa-
properties which involve many eigenstates, and for quantitietionally expensive reorthogonalizatip]. For sparse Hamil-
derived from them including thermodynamics, total energiegonians, the computational cost for generating Chebyshev
for electronic structure and forces for molecular dynamicsmoment data is linear scaling if controlled systematic or sta-
Limited energy resolution and statistical accuracy are ofteristical errors are acceptabl@,8]. Chebyshev approxima-
acceptable provided uncertainties can be quantified. tions have been applied recently to densities of states and
The maximum entropy methofdl—3] is a popular ap- spectral functions in diverse areas of condensed matter phys-
proach: maximize the information theoretic relative entropyics including the Heisenberg antiferromagnhéi, the Hol-
of the spectrum subject to data constraints. The input data asteint-J model[9], the dielectric constants of quantum dots
usually power moments. Maximum entropy spectra ard10], linear scaling algorithms for tight-binding molecular
strictly positive. Maximum entropy spectra are the solutiondynamics[11,8], nonorthogonal electronic structufd 2],
of a convex nonlinear optimization problem. Maximum en-and so on. Chebyshev approximations have also been devel-
tropy always yields broadened representations of the trueped independently for scattering problems in quantum
spectra. The resolution function is nonuniform and unknownghemistry[13—18.
with some parts of a spectrum converging more rapidly than A comparison of the maximum entropy and kernel poly-
others as the number of moments increases. Occasionallgpmial methods reveals advantages for eg@dhcomparison
maximum entropy yields a spurious structure; for example, iof Lanczos methods with kernel polynomial methods may be
can “ring” in smooth regions of a spectrum near to a Vanfound in Ref.[5].) The maximum entropy method achieves
Hove singularity. Nonanalytic features are better approxisignificantly higher-energy resolution, requiring calculation
mated at higher-energy resolution, which is achieved irof 4—10 times fewer moments for typical applications. How-
maximum entropy by fitting more moments. However, asever, the nonlinear optimization problem can be difficult to
moment order increases, the calculation of power moments &olve, the resolution is nonuniform and unknown, and there
more sensitive to machine precision limits, and the optimi-is a risk of artifacts. The kernel polynomial method has sig-
zation problem is more ill conditioned. Maximum entropy is nificantly poorer energy resolution. However, nonlinear op-
difficult to implement for more than about 50 power mo- timization is not needed, the resolution function is uniform
ments. and known, and there is no risk of artifacts.
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Our experience is that, in most cases, the computational The density of states is then
cost of generating moment data limits the ability to do cal-
culations. The practical necessity to use computational re-
sources in the most efficient way motivates our development D(x)=
of a new maximum entropy algorithm based on Chebyshev
moment data. Chebyshev moments have several advantaggsg;, abouD(x) consist of Chebyshev moments
over power moments for a maximum entropy algorithm:

(i) Machine precision limitationdn a power moment in- R 1
formation in low digits past the decimal point is redundant Mm:Tf{Tm(X)}:j Tm(x)D(X)dx. 2
with information in low-order moments. New information is -t
contained in higher digits whose cardinality increases WitrtN

h

N
gl 8(X—Xp). @)

Zl

e use the notatiof,, for a datum on a moment, even if
is estimate is approximate. We calculate moments using
e Chebyshev recursion relation

the order of the moment. Thus machine precision puts a limi
on how many power moments are useful to calculate. | h
contrast, there is no redundancy in moments constructed
from orthogonal polynomialgl9], and machine precision is T X)= 2XT(X)—T X 3
ot imiting. m1(X) = 2XT(X) = Tin-2(X), 3

(i) Conditioning.The ill-posed inverse problem of infer- \hich requires the same optimized matrix-vector-multiply

ring a spectrum from a limited number of Chebyshev mo-55qrithm used in Lanczos methods. Unlike Lanczos recur-
ments is much better conditioned than from the same numbeorion, Chebyshev recursions are numerically stable to arbi-

of power moments. In particular, the Hessian for maximumyarily jarge numbers of recursions. We use rules for multi-
entropy optimization has a much flatter eigenvalue spectrurBMng Chebyshev polynomials, e.gTom=2T,Tm—1, SO

for Chebyshev moments than for power moments. that only M/2 matrix-vector multiplies are needed to gener-
(i) Computational efficiency and accurady.simple co- ateM moments.

ordinate transformation converts a Chebyshev series 10 a gyt eyaluation oM moments requires CPU time pro-
Fourier series, which enables use of fast Fourier transfor
methods.

In summary, the combination of Chebyshev recursion an
maximum entropy should provide an efficient stable algo-
rithm capable of reaching arbitrarily high-energy resolution. N

There is an extensive literatuf20—22 on convex non- - :E i iy
. S an ¢ : . from=15 2 (T Tu(X)]1)— 1. @
linear optimization applied to maximum entropy. For our N =1
applications, we find the principal new algorithmic difficulty
to be control of the numerical accuracy of Fourier integralsThere is a similar expression fon odd.
when the true spectra have singular nonanalyti¢ features Stochastic evaluatiofd] requires CPU time scaling as
such ass functions. We adapt concepts from the kernel poly-O(NMN;). The estimator for Chebyshev moments is
nomial method and the Shannon sampling theorem to solve
this numerical accuracy problem. The resulting algorithm
has no difficulty handling thousands of Chebyshev moments,
if necessary.

In Sec. Il we briefly review methods for generating where the|r) are N, Gaussian random vectors. Such data
Chebyshev moment data. In Sec. Il we describe the kernéave a statistical variance proportional tdN,) "%, which
polynomial method. In Sec. IV we present our maximummay be expressed directly in terms of the density of states.
entropy algorithm. In Sec. V we illustrate the method usingAn estimation of statistical errors was described by Silver
an electronic structure example, comparing the performancgnd Rodef4]. More sophisticated choices of random vector
of the maximum entropy and kernel polynomial methods. Inappear to reduce statistical variari@, but they introduce
Sec. VI we conclude. unwanted statistical bias and make error estimation difficult.

Local truncation evaluation of moments requires CPU
time scaling a®(NMJ). Here, moments are calculated with
a locally truncated Hamiltoniahl;, whereJ is the number

Consider a density of states as representaﬂve of the Spe@f states included in the truncation range. The estimator for
tral properties of interest. The first step is to scale the HamilChebyshev moments is
tonian,H=aX+b such that all eigenvalues, of X satisfy
—1=<x,=<+1. These end points are rapidly computed, for A~ ; NI
example, by Lanczos methods using the same matrix-vector- Hem 2.: (Tm(X)[1)- ©
multiply operations required for generating Chebyshev mo-
ments. The only difference between the kernel polynomialThis generates data with a systematic error determined by the
method and the maximum entropy method is, in order tdruncation range. “Logical” truncatiori8] appears to con-
minimize endpoint corrections in fast Fourier transformverge more rapidly and smoothly than “physical” truncation
evaluation of Fourier integrals, we recommend placingall schemeg11,23. Local truncation may be applicable if the
well inside —1 and +1, for example,—0.99<x,<+0.99. density matrix has only local off-diagonal elements, as in
This point will be discussed further in Sec. IV. tight-binding Hamiltonians for insulators. Exact moment de-

r‘Bortional to O(N?M/2) for sparse matrices. Generate
m(X)|i) for each basis statg). The estimator for Cheby-
hev moments is then

. 1
B~ 2 (HITe(0lr), (5)

IIl. GENERATION OF CHEBYSHEV MOMENT DATA
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rivatives needed to estimate forces for molecular dynamicsnay be derived5] by requiring the kernel to be a strictly

can be calculated from a Chebyshev derivative formula.  positive normalized polynomial of degréé with minimal
CPU time and memory limit the number of momeMs  variance in¢. The result is

and their statistical and systematic errors. Fortunately, both

stochastic and local truncation methods provide means to M Mom
estimate and control errors. Om= ;O a,8,+m; (13)
I1l. KERNEL POLYNOMIAL APPROXIMATION where
The kernel polynomial method has two roles in this paper. U,(\)
First, it is a method to estimate spectra from Chebyshev mo- ayzﬁ_ (12
ment data. Second, it provides our approach to control nu- V= oU5(N)

merical accuracy in the evaluation of Fourier integrals of
nonanalytic spectra in our maximum entropy algorithm. an
An exact Chebyshev moment expansion of the density of

; sif(v+1)¢,]
states is U,\N=——F—, co =N\. 13
D(x)= ;2 wot2 > Mme(X)] 7 HereU, are Chebyshev polynomials of the second kind, and
my1—X m=1 dy=mI(M+2). g decrease smoothly and monotonically

from 1 to O asm increases from O td1. This kernel was
The kernel polynomial method truncates K@) at M mo-  originally derived by minimizing the uniform norfi24]. Its
ments, introduces a fact«yMm to damp Gibbs phenomenon, envelope function decreases exponentially at lage
and substitutegpossibly inaccuradedata u,, for the mo- The kernel polynomial method is also applicable to spec-
ments. The kernel polynomial approximation to a density oftral functions[5],
states is then

Alw)=li 1| lIfoT—l o|v
()= im0 T O Yo |

M
1+2mE:1 PG Tin(X)

1
Dk(x)= —77 T2

Let ¢=cos(x). Then T.,(x)=cos(ng). Define
D(¢)=sin(¢)D(X). The Chebyshev moments are then Fou-
rier integrals

where O is the appropriate Hermitian operator. The corre-
sponding Chebyshev moments have the forfmﬁ
=(Vo|O'T(X)O|W,). Silver et al. [5] compared the per-
formance of the kernel polynomial method to Lanczos meth-
1 - ods for spectral functions.

Mm:f Tm(x)D(x)dx=J co<me¢)D(p)dep. (9) Applications of kernel polynomial approximations to ther-

-1 0 modynamics use a rapidly converging Fourier-Bessel expan-
sion of the partition function4],

If the data are exac(¢®) can be represented as both a

simple convolution and a truncated Fourier series, . - .
Z=ePlo(pa)+2 2 In(Ba)itm|-  (19)

27
Dk(¢)= JO Ok(P—o)D(do)debo,

I m(Ba) are modified Bessel functions. The partition function
involves integral rather than pointwise convergence, so the

1 M optimal choice is no Gibbs dampingm= 1.
Su(p)= > Jo+2 >, gMcogme)|. (10) ~Our maximum entropy algorithm uses the kernel polyno-
77 m=1 mial approximation in an interesting way. We employ fast

Fourier transforms to evaluate Fourier integralDdfp) by

For later purposes, we emphasize that the Fourier integrals @imming ovelL + 1 pixels equally spaced it, correspond-
Dy (o) are um=in@py - ThusDy(¢) does not fit the mo- ing to samplingD(¢) at theL+1 zeros of cdgL+1)a].
ment data. If the data are inexact, corresponding randonmthe Shannon sampling theorem says that the only function
variables should be added to E40). which can be exactly evaluated by this procedure is a band

The kernel 6¢(¢) is a 2m-periodic polynomial approxi- limited function, a finiteLth-order cosine series. So, in fact,
mation to a Dirac delta function, analogous to the resolutiorpur algorithm exactly evaluates Fourier integrals of a Cheby-
function of a spectrometer. Resolution is uniformgnwith  shev approximation. The procedures in Sec. |l generate mo-
width Ap=M L. If gM=1, at large|¢| the kernel is oscilla-  ments of a function consisting of a sumMfs functions with
tory with periodA ¢==/M within an envelope function de- positive amplitudes, equivalent to an infinite-order Cheby-
creasing slowly as #?. The result is the Gibbs phenom- shev series. Inasmuch as, typicall>L, we should not
enon: a lack of uniform pointwise convergence of the cosineexpect to resolve all states. Our maximum entropy algorithm
series at singulafor nonanalyti¢ structures in the density of requires moments of ahth-order positive Chebyshev ap-
states. An optimaj;m that minimizes the Gibbs phenomenon proximation. The only Chebyshev approximation that can
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satisfy the positivity constraint required by maximum en-ments of the kernel polynomial approximation of degree
tropy is a kernel polynomial approximation. Moments of theM X K are,gh ", so these are what we should use as data
kernel polynomial approximation are related to moments ofn our y? criterion. Modifying the data in this way ensures
the true function by Gibbs damping factors. This subtle dif-that our target spectrum is positive and satisfies the Haus-
ference becomes important because we demand high numederff conditions for the existence of a maximum entropy

cal accuracy. We elaborate on these points in Sec. IV.  solution. Choosing in our algorithm is equivalent to choos-
ing the desired energy resolution. If our maximum entropy
IV. MAXIMUM ENTROPY ALGORITHM solution was in fact equivalent to a higher-resolution kernel

i _ ) _ polynomial approximation, choosing the number of pixels

This section presents our maximum entropy algorithm —\1 » K would yield exact Fourier integrals. But inasmuch
Although it may be regarded as an adaptation of previougs oyr maximum entropy solution is not exactly band lim-
maximum entropy algorithmg20—-22, our problem has is- jteq we choose the number of pixels some integer factor

sues of numerical accuracy f@(x) that contain singular larger thanM XK, i.e., L=MXKxI. The extra factor
(nonanalyti¢ structures such a8 functions. further reduces numerical errors.

Consider the case where the data are subject to Gaussian IncreasingL to improve numerical accuracy must be bal-

uncertainties, anced against increased computational resources required for

the fast Fourier transform. CPU time scale<d& In L) and
memory scales a®(L). Typically, we find maximum en-
tropy improves resolution by factors of 4—10 over the kernel
polynomial method, so most of the gain is obtained by
choosing 4<K<=10. The correspondinggh**'s for
0=m=<M are only slightly smaller than 1, but this differ-
Bom— | 2 ence is enough to determine whether our algorithm con-

2= (u) . (17)  verges to the stopping criterion or stalls at high Without

m=0 Om the Gibbs damping correction, convergence may be very
nonuniform, and in some regions approach an energy reso-
e . . lution that cannot be described with the number of pixels
precision required, Wh'.Ch can be_ very §mal|. Trhe=p M chosen. With the Gibbs damping correction, the dynamic
is included to constrain normalizatiop,o=1. Taking the 546 of the resolution improvement is limited, and can be

limit o—0 strictly enforces normalization. In our applica- panqjed with the number of pixels chosen. We also typically
tions using 32-bit computers, sixth or seventh digits past thgy the choicel =4 to be sufficient to fit Chebyshev mo-
decimal point of moments often contain important informa- ants to seven-digit accuracy.

. . 2 .

tion. We typically dropx” by 12-14 orders of magnitude  gnq_noint corrections are another concern in evaluating

below its starting values during the course of converging t0 & rier integrals. They are often essential to obtain reason-

maximum entropy solution. Such high numerical accuracyypje convergence for high-order moments. Sophisticated ap-

can be crmc_al to avoid spurious artifacts, and to yield theproaches to this problem have been developed based on in-

correct physics. _ , _terpolation scheméd@5]. However, within our algorithm we
Therefore, very careful attention to numerical accuracy ig,5ve the option of minimizing end-point corrections at the

required in evaluating Fourier integrals, Ef). To have an y1set by forcing the spectrum to be close to zero near end-
efficient maximum entropy algorithm, we evaluate Fourier oints =0 and¢= . The easy way to forcB(¢) toward

integrals by fast Fourier transform. This equals a sum ove ero at end points is to scale the Hamiltonir-aX +b
equally spaced points ig, such that all eigenvalues, of X lie between, say;-0.99 and

:&m:Mm"' Mm, Enm=0, E77m77m’:0'2m‘(5mm’- (16)

Here » is a random variable, anB denotes the statistical
expectation value of the random variable following it. The
x? statistic for measuring quality of fit is then

In the case of exact moment data, sgt to the numerical

L +0.99, rather than-1 and+ 1. This change has only a 1%
~S cogmdé)D Ad. 18 impact on ¢ resolution, but it avoids the end-point correc-
Hom Zﬁ <mé)D($)AS a8 tions and the bias of interpolation schemes. This justifies the

recommendations made in Sec. Il for scaling the Hamil-
TheL+1 ¢, satisfy cof(L+1)¢]=0, where GsI<L. The tonian. We often find this superficially small correction to be
Shannon sampling theorem says this approximation becomesitical to achieving high accuracy fits without stalling.
exact only ifD(¢) is a band limited function of degrde. Our optimization problem is to maximize the relative en-
But the exactD(¢) in our applications are sums éffunc-  tropy
tions with positive amplitudes, so evaluation of Fourier inte-
grals by fast Fourier transform with a finite number of pixels _ |7
L is not exact. The maximum entrof®/( ¢) also correspond S= fo D(#)~Da(4) D(¢)In< Dy( o)
to infinite-order Fourier series, so evaluation of their Fourier
integrals by this procedure is not exact either. subject to data constraintS.is strictly negative and equals

Our strategy to minimize numerical errors is to minimize zero only wherD=D,. HereD,(¢) is a default model for

high-frequency components of the maximum entropy soluthe density of states in the absence of data. We obtain faster
tion. The goal of our algorithm is to find a kernel polynomial convergence with less risk of spurious artifacts by using
approximation forM X K moments instead o moments, prior knowledge to choose a default model closer to the final
where K is some integer. Maximum entropy provides theanswer. In the absence of prior knowledge, we usually use
criterion for extrapolating the moment series. But the mo-the kernel polynomial approximation as the default model,

d¢ (19

D(¢))
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oD(¢)

1250.0 " : : | 5 D M B — M
o _n(Do((Z))>+mE—o Maagj cosgmd)=0.

1000.0 (21)

This is a convex optimization problem having a unique an-
swer. Unfortunately, this approach is difficult because this
problem statement is written in terms of a continuous posi-
tive variableD () which varies typically by many orders of
magnitude. In practice, the number of variables to optimize
] would be the number of pixels chosen, which for reasons
of numerical accuracy we discussed earlier is usually a quite
large number. However, dual optimization problenj20]
solves the same problem, is more stable numerically, and is
hl easier to implement than the primal problem. It requires only

750.0

D(E)

500.0

250.0

L M <L parameters. defined by
11

2460 ~30.0 ~20.0 -10.0 0.0 10.0 -
E m m

Am= . 22

=t (22

FIG. 1. Density of states of an orthogonal tight-binding model
for amorphous diamond calculated with the maximum entropyThen the maximum entrop® (¢) satisfying Eq.(21) is
method using 1024 exact Chebyshev moments. M
_ . _ o D(¢>=Do<¢>exp( -2 xmcosm@). (23)
inasmuch as the motivation for maximum entropy is to im- m=0
prove energy resolution beyond the kernel polynomial

method. This form is also obtained by maximizing entropy subject to
More specifically, theprimal optimization problemis to ~ Lagrange contraints on moments with Lagrange multipliers
maximize X. The dual optimization problem is to maximize
M 252
™ aop\
2 E|nfDd+ it —o—| (24
Qp=s- L 0 Qg ( (D@ |+ 2 | ikt —5— | (29)

as a function of the set of,,,. Mapping onto the dual space
of Lagrange multipliers reduces an infinite-dimensional op-
timization problem to a feasible finite-dimensional problem.
Away from the maximum, define

as a function of a continuous varially ¢). The statistical
regularization parametes sets a balance between the fit,
measured by?, and an information measureS of distance
between the inferred (¢) and the default modeD (). iQq .

Alternatively, we regard I/ as a Lagrange multiplier enforc- En= h = HmT T @0i N . (25
ing a constraint ony?. m

Our algorithm consists of three nested loops: the oute
loop iteratively decreasas starting from a high value, until
a stopping criterion is reached; the middle loop for each
iteratively solves for thé®(¢) that maximizeLQ; the inner
loop at eachw andD (¢) solves for the next update &f( ¢)
using linear equation solvers such as conjugate gradients. We Hy(KMFLI—XM) =", (26)
discuss each of these loops in turn.

The outer loop typically starts at largg~ x2, thex? of ~ Here is the Hessian of the dual problem, which is a posi-
the default modeD,, then progress geometrically down in tive definiteM X M matrix and a simple function of the mo-
a, e.9.ay41= /2. The corresponding? decreases and the ments,
information — S increases. If the middle loop is unstable, as )
measured by a significant increaseyify go back to condi- T I Qd _ Hmrm + Am—m|
tions at the start of this loop, halve the step dowrjrand M N mdN 2
iterate until stability is reached. Popular stopping criteria for (27)

a arexy’=M and y’—2aS=M, although many other crite-

ria are discussed in the literature. Once the stopping criteriof nen

is passed, perform a golden search for the optimaWe M >

often find that the information—S saturates at an Q=0,+ > &m (29)
a-independent value as decreases, so that the outer loop SR ) 2a(rﬁq'

may be stopped earlier.

In principal, the middle loop solves the primal optimiza- We haveQq4>Q, in Eq. (28), and as the iteration proceeds
tion problem Qg (Qp) approaches., from above(below). Hence con-

Equation(22) is satisfied wher¢,,=0.

The middle loop of our algorithm solves E¢R2) by
Newton-Raphson iteration. Beginning with some stariifig
the (n+ 1st step is

+ aa,2n5mm/ .
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75.0 g T T } T T v T v 75.0
-=-- MEM 128
— MEM 1024
1
50.0 - 4 50.0
U
D(E) 1 FIG. 2. Comparison of portions of the density
of states in Fig. 1 calculated by maximum en-
tropy for 128 and 1024 moments.
25.0 1 F 4 25.0
r‘
4 |‘ 4
/ \
A
\\4&
0 4 1 = -~ 2019 0.0

0 .
-36.0 -35.0 -34.0 -10.0 -9.0 -8.0 -7.0
E

verging bounds at theth iteration areQQzQ“ng, where be accommodated, because the covariance of moments is
Q”=lim,_.{Q} ’QB}' These bounds provide stopping crite- proportional to the Hessian. Details of these extensions will
ria for the middle loop. We typically stop &@4=1.02Q,,. be presented elsewhere.
The inner loop is the solution of ER26) by linear equa-
tion solvers such as conjugate gradients. This task can be
handled by standard packages suctess®Aack. An advan- V. AN EXAMPLE
tage of Chebyshev moments is that the spectrum of eigen- \ye jjiustrate the performance of our maximum entropy
values of the Hessian in EQ7) is almost flat, whereas the yqhod(MEM) algorithm with the example of an orthogonal
eigenvalue spectrum for power moments is steeply decreagyn.hinding calculation of the density of states of amor-
ing. Thus this problem is well conditioned for Chebyshevpr10us diamond by Dong and Drabd#6]. The purpose of
moments, but can easily become ill conditioned for powereir stydy was to examine the localized to extended transi-
moments asvl increases. _ _ tion in band-tail states in an amorphous semiconductor. We
We find the CPU time required by our algorithm scales asefer readers to their paper for a discussion of the physics.
O(ML In(L)). But it remains negligible compared to the yere we are only interested in a comparison of methods for
CPU time required to generate moment data for most probagtimating densities of states. We note that their maximum
lems. As we stated before, use of the maximum entropyniopy calculations used Chebyshev moments, but were
method usually cuts overall CPU requirements by at least §mited to about 90 moments because of the difficulties in
factor of 4 over the kernel polynomial method. Isolated fea‘implementing a maximum entropy algorithm. With the algo-
tures in spectra, such as individual states and band edg&$nmic improvements presented in this paper, we demon-

usually converge much faster, up to a factor of 10 or more.gyrate that maximum entropy calculations with thousands of
A few words should be said about data generated by StGy,oments are now feasible.

chastic methods in Eq(5). Calculation of the covariance  The Hamiltonian considered has 16 384 states. We show
matrix C for such data is described in an earlier pd@drits  maximum entropy results for the goal of improving resolu-
structure is the same as the Hessian in @q). The appro-  tjon by a factor of 8 over the kernel polynomial method.
priate generalized” statistic is Hence we choosk =8. We setl =4 to minimize numerical
errors in the evaluation of Fourier integrals. We use up to
2~ Nte-1lon M =1024 exact Chebyshev moments. Hence the number of
X)) C ). (@9 JixelsL—M xKx =32 768.
Figure 1 shows the full density of states obtained using
There is a cancellation, leading to an effective Hessian esnaximum entropy foM =1024. Note the optical gap in the
sentially proportional to a unit matrix and independenbof  density of states. Figure 2 shows a comparison of maximum
This property further facilitates finding maximum entropy entropy results foM =128 and 1024 for two portions of this
solutions for data generated by the stochastic method. spectrum. On the left is a region where the states are dense,
Energy derivatives needed for molecular dynamics can band on the right is a region inside the gap where the states
derived for maximum entropy using the same expressions foare sparseM =128 is a factor of 2 or 3 larger than the
exact derivatives of moments. The statistical error for stomaximum number of moments that can be handled by maxi-
chastic methods using Gaussian random vectors can easitgum entropy algorithms using power moments. Our algo-
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!l‘ | FIG. 3. Comparisons of portions of the den-
D(E) i ! sity of states in Fig. 1 calculated by the kernel
“ polynomial method(KPM) for 1024 moments
\ | and by the maximum entropy meth@dEM) for
[ | 1024 moments.
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rithm clearly is able to handle many more moments and tanificant resolution gains over the kernel polynomial method
achieve much higher-energy resolution. Figure 3 shows thér practical physics examples. The CPU time we need to
same comparison between kernel polynomial method anfind the maximum entropy solution scales approximately as
maximum entropy withM =1024 moments. Again maxi- the number of pixels times the number of moments. For most
mum entropy provides a dramatic improvement in energyapplications, this time is small compared to the CPU time we

resolution over the kernel polynomial method. need to generate the Chebyshev moment data. Overall CPU
time can scale linearly in the number of states if controlled
VI. CONCLUSION statistical or systematic errors are acceptable.

The resulting maximum entropy algorithm has some tun-

We have described an efficient algorithm to calculate dening parameters to control the balance between numerical ac-
sities of states and spectral functions of large sparse Hamikuracy, convergence, energy resolution, and computational
tonians using Chebyshev recursion and maximum entropy. lesources. AFORTRAN 77 program implementing our algo-
is a nonlinear extension of the kernel polynomial method. Itrithms for the Kernel polynomial method and MEM is avail-
is capable of handling large numbers of moments andcible from the authors by sending e-mail to
nonanalytic(singulay structures in densities of states and rns@loke.lanl.gov. It uses publically available libraries in-
spectral functions to achieve high-energy resolution. Theluding bFFTPACK for fast Fourier transforms angispAck
choice of Chebyshev recursion overcomes problems of mé&er solving systems of linear equations.
chine precision and ill-conditioning found in maximum en-
tropy algorithms for power moments. It also circumvents the
accumulation of numerical roundoff errors in Lanczos recur-
sion. It controls the numerical accuracy of Fourier integrals Research was supported by the U.S. Department of En-
by multiplying the moment data by Gibbs damping factorsergy. We thank D. Drabold and J. J. Dong for their kind
appropriate to the number of pixels chosen. It avoids endpermission to use the example reported here. We thank D.
point corrections to the fast Fourier transforms by appropri-Drabold and J. Kress for helpful comments on the manu-
ate scaling of the Hamiltonian. Our algorithm achieves sig-script.
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